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Crossover behavior for long reptating polymers
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The Rubinstein-Duke model for polymer reptation is analyzed by means of density matrix renormalization
techniques. It is found that the crossover in the scaling behavior of polymer renewal time~or viscosity! arises
from the competing effect of the contribution due to tube length fluctuations and higher-order corrections,
which are of opposite sign. Experiments which ought to emphasize both contributions are suggested. The
exponent describing the subleading scaling behavior of the diffusion coefficient is also investigated.
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The study of the dynamical properties of polymers is
field of great interest, because of important applicatio
ranging from material science to biophysics. The proces
reptation, i.e., the motion of a polymer along its own conto
by the diffusion of stored length, is generally believed to
one of the most important mechanisms for polymer dyna
ics @1,2#. The simplest model for reptation is that introduc
by Rubinstein@3# and later extended by Duke@4# to include
the effect of a driving field. In spite of its simplicity th
Rubinstein-Duke~RD! model contains the essential physi
of reptation and compares well with experiments@5#. As
very little exact results are available for the model, one ha
rely on numerical techniques to investigate its properties

In this Rapid Communication we study the scaling beh
ior as a function of the polymer lengthN, of the characteris-
tic time for reptationt ~known as polymer renewal time!,
and of the diffusion constantD. These quantities are ob
tained by the density-matrix renormalization-group~DMRG!
technique@6#. The reptation theory predicts that the diffusio
constant and renewal time scale asymptotically asD;N2x

andt;Nz, with x52 andz53, respectively@1#. While the
scalingD;N22 is considered experimentally verified@7#, a
long debate@1,2# has been generated around the value of
exponentz, which was found experimentally to be system
atically higher than 3: measurements of viscosity, which
essentially proportional tot, of dense polymer mixtures
yielded typicallyz'3.3– 3.4. It was suggested earlier@8,3#
that this discrepancy is due to crossover effects that mask
correct asymptotic behavior and an analytic expression
the correction terms has been proposed. The aim of this
per is to investigate further this fundamental issue using
DMRG method, which allows us to compute stationary st
properties of rather long polymers with an unpreceden
accuracy. We find that crossover effects arise because o
competition between leading correction terms originat
from tube length fluctuations@2# and higher-order terms
which are typically of opposite sign, and, to our opinio
cannot be neglected. The interplay between these two te
gives rise to the appearance of approximate power laws
are not the true asymptotic ones. Moreover we find that
crossover region is rather sensitive to a parameter descri
the behavior of the endpoints of the chain. We suggest
-651X/2001/64~1!/010801~4!/$20.00 64 0108
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by tuning this parameter in an experiment it would be p
sible to explore both types of contributions.

We consider ad-dimensional version of the RD model o
a hypercubic lattice@see Fig. 1~a!#. The polymer is divided in
N segments, or reptons~here ‘‘repton’’ stands for the basic
unit for reptation!, of the size of the order of the persisten
length and each lattice site can accommodate an unlim
number of them. It is convenient to introduce a small drivi
external field«, applied in a direction tilted by 45° with
respect to the axes of the lattice: following previous wo
@9#, we assign a rateB5 exp(«/2) for moves of reptons in the
direction of the field, while moves in the opposite directio
occur with a rateB21. Here« is a dimensionless unit for the
strength of the driving field. We focus here on the propert
in the limiting regime of small«, although the DMRG tech-
nique is not restricted to this regime.

The stationary state properties of the system can be
rived from the solution of the Master equation

dP~y,t !

dt
5(

y8
@W~yuy8!P~y8,t !2W~y8uy!P~y,t !#

5(
y8

Hyy8P~y8,t ! ~1!

in the limit t→`. Here P(y,t) indicates the probability of
finding the polymer in a configurationy at time t and
W(y8uy) is a transition rate per unit of time from a configu
rationy to a configurationy8. The matrixH contains both the

FIG. 1. ~a! Configuration of a chain withN58 reptons embed-
ded in a two-dimensional lattice.~b! One-dimensional projection o
the configuration of~a! along the direction of the applied field iden
tified by the sequence of relative projected coordinatesy
5$1,0,1,1,21,1,0%. The vertical arrows represent the allowe
moves for the reptons.
©2001 The American Physical Society01-1
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CARLON, DRZEWIŃSKI, AND van LEEUWEN PHYSICAL REVIEW E64 010801~R!
gain and loss terms and is stochastic in the sense that the
over all columns vanishes, as required from the conserva
of probability.

Since the transition probabilities depend only on the p
jected coordinate along the field direction, the RD mo
becomes essentially one-dimensional@see Fig. 1~b!#. The
relative coordinates between neighboring reptons can ass
only three values,y5$21,0,11%; therefore, for a chain ofN
reptons there are 3N21 possible configurations. One shou
distinguish between moves for internal and end reptons
terms of they coordinates the moves are:~i! Exchange of 0’s
and 1’s for internal reptons, i.e.,61,0↔0,61, ~ii ! end rep-
ton contractions61→0, and~iii ! end repton stretchings 0
→61.

The only effect of the dimensionality appears on the ra
for moves~iii !, which aredB (dB21) for moves in the di-
rection of~opposite to! the field, as the end repton can mo
to d unoccupied new sites. Rates for the moves of types~i!
and~ii ! are not affected byd. Rather than linkingd with the
dimensionality~or even the coordination number! of the lat-
tice, we prefer to seed as a parameter for the properties
the endpoints of the polymer which influences t
asymptotic behavior in an important way. This allows us
also consider valuesd,1. The limit of smalld corresponds
to the case where the motions of type~iii ! are suppressed
while for d large the polymer is stretched.

Renewal time.As can be deduced from Eq.~1! the re-
newal time corresponds to the inverse of lowest gap of
matrix H, which we calculate by DMRG setting«50. We
recall that the DMRG method, although approximate, p
vides extremely accurate results@6,11#; in the present com-
putation gaps are obtained for polymers of the order oN
'100 reptons and with a typical accuracy of six to sev
significant digits; therefore, results can be considered,
practical purposes, numerically exact.

Doi @8# argued that the discrepancy between theoret
predictions and experimental results on the scaling of
polymer renewal time is due to finite size effects~due to
length fluctuations! and proposed the following expression

tN;N3@12AN0 /N#2, ~2!

with N0 a characteristic length such that only forN@N0 the
right asymptotic behavior can be observed. Rubinstein@3#
showed that a numerical calculation in the RD model~for
chains up toN'100 reptons! yieldedtN;N3.4; however, the
asymptotic behaviorN3 was not observed.

To analyze the scaling behavior oftN , we considered

zN5
ln tN112 ln tN21

ln~N11!2 ln~N21!
, ~3!

which converges toz (tN;Nz) in the limit N→`.
In Fig. 2~a! we showzN for d51,2,3 plotted as a func-

tion of 1/AN since this type of correction-to-scaling term
predicted by Eq.~2!. Using a cubic fit in powers of 1/AN we
find z53.00(2) for d53, z53.002(4) for d52, and z
52.99(1) ford51, in agreement with the theoretical arg
ments leading to a renewal time scaling ast;N3 @1#. Figure
01080
um
n

-
l

me

In

s

e

-

n
r

al
e

2~a! shows also the fitting curve ford53 ~dashed! and the
prediction from Doi’s theory obtained by substituting Eq.~2!
into Eq. ~3! ~dotted-dashed!, which yields

zN531
AN0 /N

12AN0 /N
. ~4!

The latter compares very well with our data in the region
largeN, but fails to reproduce the change of curvature inzN .
Typically, the DMRG data forzN are charaterized by a maxi
mum, which in a plot of lntN versus lnN corresponds to an
inflection point, where curvature is absent. Therefore, in
range of lengths around the maximum the numerical d
would be fitted rather well by an effective exponentzeff
5maxNzN . Our analysis indicates that, for an appropriate d
scription of the crossover region, one needs to include
ther correction terms beyond those given in Eq.~2!. It would
be desirable to have some analytical insight on the phys
origin of these terms.

It is also interesting to investigate the effect of the en
points stretching rated on the scaling behavior oft. As
shown in Figs. 2~a! and 2~b!, the maximum ofzN decreases
when d decreases; we findzeff'3.4 (d51) and zeff'3.2
(d50.5). For d sufficiently small (d50.1) the maximum
disappears; assuming that asymptotic exponents do not
pend ond, the turning point will be reached to much long
polymers than those considered here. Note that there
range of lengths wherezN becomes even smaller than 3.

We recall that, although the reptation theory strictly a
plies to the motion of an isolated polymer into a fixed ne
work of obstacles, it is also used to describe more com
cated situations as concentrated solutions of flexi
polymers@2#. The idea behind this assumption is that ea
polymer is topologically constrained by its neighbors, whi

FIG. 2. ~a! Plot of zN as function ofN21/2 for d51,2,3; the
dashed line is a cubic fit in powers ofN21/2 for the d53 case and
the dotted-dashed line is Eq.~4!. ~b! As in ~a! for d
50.10,0.25,0.50. Here and in all the other figures error bars, un
explicitly shown, are smaller than symbol sizes.
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on the relevant timescale for the dynamics can be viewe
forming a frozen environment. It is not clear whether th
simplifing assumption is always legitimate; for instance,
has been suggested that the discrepancy between theor
experiments on the polymer renewal time may be due
inter chain interactions@12#, which are not included in the
simple reptation theory.

If the RD model correctly describes dense polymer so
tions, we expect that the exponentz found experimentally in
viscosity measurements decreases when decreasingd. A way
of exploring experimentally differentd values would be tha
of coating the ends of the chains with some large molecu
if their size becomes comparable to that of the entanglem
distance, the value ofd could be substantially lowered. Fo
sufficiently smalld, endpoint fluctuations are suppressed a
the system should enter in a different regime where cor
tions beyond Eq.~2! start to play a dominant role andzN
,3, as seen from the curve withd50.10 in Fig. 2~b!. An
experimental verification of these ideas would be rather u
ful to understand further the long debated issue of the p
mer relaxation time.

Diffusion constant.Crossover behavior also appears
other quantities; for instance, in the scaling of the diffusi
constantD(N) as a function of the polymer lengthN. We
calculatedD(N) by applying a small field« and using the
Nernst-Einstein relation@14#

D5 lim
«→0

v
N«

. ~5!

For the scaling behavior ofD(N) one expects

D~N!5
1

AN2 S 11
B

NgD ~6!

where the leading termN22 is by now well-understood
@1–3,15–18# and is considered to be experimentally verifi
@7#. In the RD model also the prefactor happens to be kno
exactly @16,17#: A52d11. The next to leading order term
has been investigated as well. By relating the diffusion c
stant to the renewal time it was predicted@19# that the cor-
rection term would be anomalous, i.e.,g51/2. This predic-
tion is also supported by other theoretical arguments@17#.
On the other side, accurate Monte Carlo simulation resu
done ford51, could be best fitted with a powerg'2/3 both
for the RD model@15# and also for another model of polyme
reptation@18#. This issue is still unresolved. An exponent 2
is somewhat surprising since, as also seen above for the
one naturally expectsN21/2 corrections.

In Fig. 3 we show a plot ofgN5D(N)N221/A as func-
tion of N on a log-log scale ford51. The figure shows
results from exact diagonalization for small lattices, Mon
Carlo simulations@10#, and DMRG results which we ex
tended up toN557 @13#. DMRG data are in good agreeme
with those obtained from other methods and follow rath
nicely a slope22/3 in the plot. Only a very close inspectio
of the region of large-N systems reveals~see inset! that this
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slope is not the correct asymptotic one. Similar to the g
this can be best seen from the discrete derivative

gN52
ln gN112 ln gN21

ln~N11!2 ln~N21!
. ~7!

A plot of gN versus 1/AN is shown in Fig. 4 ford51, 2,
and 3. As for the gap, we note a nonmonotonic behavior
d51, where the maximum ofgN is found at about 0.68, i.e.
very close to the conjectured powerg52/3. However, for
sufficiently largeN, gN clearly deviates from 2/3 to smalle

FIG. 3. Log-log plot ofDN221/3 vsN for d51. The DMRG
data are in good agreement with the exact ones and with the M
Carlo results. Inset: blow up of the region for largeN where the
deviation of the DMRG data from the slope 2/3 starts being noti
able.

FIG. 4. Plot of the effective exponentgN as function of 1/AN
for d51 ~circles!, 2 ~pluses!, and 3 ~stars!. The horizontal dashed
line indicates the value of the correction exponentg52/3 conjec-
tured on the basis of Monte Carlo simulations ford51. The dotted
line is a guide for the eye. Inset: Plot of the effective expon
describing the scaling behavior of the diffusion constant, wh
converges asymptotically tox52.
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values. Ford52 and 3,gN is monotonic inN. As we did for
the renewal time exponentzN , we fit gN with a cubic curve
containing powers of 1/AN. Extrapolations yield g
50.51(1) (d53), g50.51(1) (d52), andg50.48(3) (d
51). These results strongly support a correction term w
g51/2. The cased51 nicely illustrates the effect of a max
mum in the effective exponent~see Fig. 4!, which produces
an inflection point in the plot of Fig. 3, and data apparen
closely follow a straight line in the log-log scale. Finally, th
inset of Fig. 4 shows the effective exponent obtained fr
the logarithmic derivative of the diffusion constant, which
seen to converge asymptotically tox52. Notice that the be-
havior is similar to the curves of Fig. 2, but the maximum
xN , which starts to develop whend becomes smaller, is les
pronounced than forzN . This indicates that crossover ph
nomena for the scaling of the diffusion constant are less
vere than those involvingt.

In conclusion, the above results show that the DRMG
powerful technique to investigate the properties of a rep
ing polymer. Although we have restricted ourselves to
s

in
.
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renewal time and the diffusion coefficient, the DMRG calc
lations also yield a host of detailed information about t
structure of the reptating polymer, for instance, on the d
velocity and correlation functions; these results will be p
sented elsewhere. Here we have shown that the large fi
size corrections, characteristic for the reptation proce
manifest themselves as effective exponents for
asymptotic behavior of the renewal time and the diffusi
coefficient. We found that DMRG results reveal that wh
the leading correction terms, as given by Doi’s theory@2# fit
rather well the data for largeN, they are not sufficient to
cause a crossover behavior, and higher-order correct
need to be included. Our analysis also shows that log-
plots to determine exponents are hazardous when such
corrections to scaling are present. In particular, when
effective exponent shows a stationary point as a function
N, it shows up as an inflection point that can easily be m
taken for the asymptotic region in the case of insufficie
data.
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