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Crossover behavior for long reptating polymers
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The Rubinstein-Duke model for polymer reptation is analyzed by means of density matrix renormalization
techniques. It is found that the crossover in the scaling behavior of polymer renewdbtiviscosity arises
from the competing effect of the contribution due to tube length fluctuations and higher-order corrections,
which are of opposite sign. Experiments which ought to emphasize both contributions are suggested. The
exponent describing the subleading scaling behavior of the diffusion coefficient is also investigated.
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The study of the dynamical properties of polymers is aby tuning this parameter in an experiment it would be pos-
field of great interest, because of important applicationssible to explore both types of contributions.
ranging from material science to biophysics. The process of We consider a-dimensional version of the RD model on
reptation, i.e., the motion of a polymer along its own contour@ hypercubic latticésee Fig. 1a)]. The polymer is divided in
by the diffusion of stored length, is generally believed to beN segments, or reptorikiere “repton” stands for the basic
one of the most important mechanisms for polymer dynamUn't for reptation, of t_he size of the order of the per5|ste_n(_:e
ics[1,2]. The simplest model for reptation is that introduced!€N9th and each lattice site can accommodate an unlimited
by Rubinstein 3] and later extended by DuKd] to include number Of them. It |s.con.ven|en.t to mtroduce a smalol dr|.V|ng
the effect of a driving field. In spite of its simplicity the external fielde, applied in a direction tilted by 45° with

. . : : . respect to the axes of the lattice: following previous work
Rublnste]n-Duke(RD) model contains the ess_entlal physics [9] ?/ve assign a raB= exp/2) for moves o?rgptons in the
of reptatlon and compares well with experimet. As direction of the field, while moves in the opposite direction
very little exact results are available for the model, one has t%ccur With a rat8—L. Heree is a dimensionless unit for the
rely on.numerical techniques_ o investigate its pr(_)perties. strength of the drivirig field. We focus here on the properties

In this Rapid Communication we study the scaling behav~In the limiting regime of smalk, although the DMRG tech-
ior as a function of the polymer lengtl, of the characteris- nique is not restricted to this regime.
tic ime for reptation (known as polymer renewal time The stationary state properties of the system can be de-
and of the diffusion constarD. These quantities are ob- rjed from the solution of the Master equation
tained by the density-matrix renormalization-grdMRG)
techniqug6]. The reptation theory predicts that the diffusion ~ dP(y,t)

constant and renewal time scale asymptoticallyDasN ~* dt :%,: [W(yly")P(y',t) =W(Y'|y)P(y,t)]

and 7~N?, with x=2 andz= 3, respectivelyf1]. While the

scalingD~N~2 is considered experimentally verifi¢d], a => H,., Py’ 1
yy’ (y 't) ( )

long debatd1,2] has been generated around the value of the y'

exponentz, which was found experimentally to be system- . . - .
atically higher than 3: measurements of viscosity, which i the fimit t—oe. Herg P(y.0) |n'd|cate's the pr'obablllty of

. . . finding the polymer in a configuratioy at time t and
essentially proportional tor, of dense polymer mixtures

yielded typicallyz~3.3-3.4. It was suggested earl[@;3] W(y'|y) is a transition rate per unit of time from a configu-

that this discrepancy is due to crossover effects that mask thrgnonyto a configuratiory”. The matrixH contains both the

correct asymptotic behavior and an analytic expression for
the correction terms has been proposed. The aim of this pa-
per is to investigate further this fundamental issue using the
DMRG method, which allows us to compute stationary state
properties of rather long polymers with an unprecedented
accuracy. We find that crossover effects arise because of the
competition between leading correction terms originating
from tube length fluctuation$2] and higher-order terms,

which are typically of opposite sign, and, to our opinion,  gG, 1. (a) Configuration of a chain witthN=8 reptons embed-
cannot be neglected. The interplay between these two termgd in a two-dimensional latticéb) One-dimensional projection of

gives rise to the appearance of approximate power laws thae configuration ofa) along the direction of the applied field iden-
are not the true asymptotic ones. Moreover we find that théified by the sequence of relative projected coordinates

crossover region is rather sensitive to a parameter describing{1,0,1,1-1,1,0.. The vertical arrows represent the allowed
the behavior of the endpoints of the chain. We suggest thahoves for the reptons.
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gain and loss terms and is stochastic in the sense that the s13.8 - - T
over all columns vanishes, as required from the conservatio od=1

of probability. +d=2 /.’ ¥
Since the transition probabilities depend only on the pro- " 2?3d_3 o4

jected coordinate along the field direction, the RD modeB.6 [ _ _ Eg'(“') ,;gﬁ

becomes essentially one-dimensiofiste Fig. 1b)]. The #

relative coordinates between neighboring reptons can assur
only three valuesy={—1,0,+ 1}; therefore, for a chain dfl
reptons there are™3'! possible configurations. One should 34 |
distinguish between moves for internal and end reptons. li
terms of they coordinates the moves ai@) Exchange of 0’s

and 1's for internal reptons, i.et; 1,0—~0,+ 1, (ii) end rep-

ton contractionst 1—0, and (i) end repton stretchings 0 3-2

—=*1. o—o0d=0.10
The only effect of the dimensionality appears on the rate: =—= d=025 b
: 1 ; ; o——=0 d=0.50 (b)
for moves(iii), which aredB (dB™ ) for moves in the di- ¢ )
. . . 3 L L I 2' 1 1 I
rection of(opposne to the field, as the end repton can move 2T 01T 02 03 040 01 02 03
to d unoccupied new sites. Rates for the moves of ty(pes N LN

and(ii) are not affected by. Rather than linkingl with the

dimensionality(or even the coordination numbeof the lat- FIG. 2. (a) Plot of zy as function ofN~Y2 for d=1,2,3; the

tice, we prefer to sed as a parameter for the properties of dashed line is a cubic fit in powers bf /2 for thed=3 case and

the endpoints of the polymer which influences thethe dotted-dashed line is Eq(4). (b) As in (8 for d

asymptotic behavior in an important way. This allows us to=0.10,0.25,0.50. Here and in all the other figures error bars, unless

also consider valued<1. The limit of smalld corresponds explicitly shown, are smaller than symbol sizes.

to the case where the motions of tyfig) are suppressed,

while for d large the polymer is stretched. 2(a) shows also the fitting curve fat=3 (dasheg and the
Renewal timeAs can be deduced from Eql) the re-  prediction from Doi's theory obtained by substituting E&2).

newal time corresponds to the inverse of lowest gap of thénto Eg.(3) (dotted-dashed which yields

matrix H, which we calculate by DMRG setting=0. We

recall that the DMRG method, although approximate, pro- _ VNo/N
- ; =3+ —. (4)
vides extremely accurate resul&11]; in the present com- 1—Ng/N

putation gaps are obtained for polymers of the ordeNof
~100 reptons and with a typical accuracy of six to severThe latter compares very well with our data in the region of
significant digits; therefore, results can be considered, folargeN, but fails to reproduce the change of curvatureyn
practical purposes, numerically exact. Typically, the DMRG data fory, are charaterized by a maxi-
Doi [8] argued that the discrepancy between theoreticalum, which in a plot of Inry versus Ir'N corresponds to an
predictions and experimental results on the scaling of thénflection point, where curvature is absent. Therefore, in a
polymer renewal time is due to finite size effe¢ttue to  range of lengths around the maximum the numerical data
length fluctuationsand proposed the following expression: would be fitted rather well by an effective exponeng
=maxgzy . Our analysis indicates that, for an appropriate de-
N3 1= No/NJ?, (2)  scription of the crossover region, one needs to include fur-
ther correction terms beyond those given in Ej. It would

with No a characteristic length such that only f4&Nq the  pe desirable to have some analytical insight on the physical
right asymptotic behavior can be observed. Rubinsi8in  origin of these terms.

showed that a numerical calculation in me RD motfet It is also interesting to investigate the effect of the end-
chains up tdN~100 regpton};yleldedervN “ however, the  points stretching ratel on the scaling behavior of. As
asymptotic behavioN®” was not observed. shown in Figs. 23) and 2b), the maximum ofzy, decreases

To analyze the scaling behavior of;, we considered when d decreases; we finde~3.4 (d=1) and ze~3.2
(d=0.5). Ford sufficiently small @=0.1) the maximum

In7yea— N7y 3) disappears; assuming that asymptotic exponents do not de-

N In(N+1)— In(N-1)" pend ond, the turning point will be reached to much longer
polymers than those considered here. Note that there is a
which converges ta (7y~N?) in the limit N—c. range of lengths wherg, becomes even smaller than 3.
In Fig. 2(a) we showzy for d=1,2,3 plotted as a func- We recall that, although the reptation theory strictly ap-

tion of 1/JN since this type of correction-to-scaling term is plies to the motion of an isolated polymer into a fixed net-
predicted by Eq(2). Using a cubic fit in powers of YN we  work of obstacles, it is also used to describe more compli-
find z=3.00(2) for d=3, z=3.002(4) ford=2, andz cated situations as concentrated solutions of flexible
=2.99(1) ford=1, in agreement with the theoretical argu- polymers[2]. The idea behind this assumption is that each
ments leading to a renewal time scalingrasN® [1]. Figure  polymer is topologically constrained by its neighbors, which
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on the relevant timescale for the dynamics can be viewed as 0 o -175

forming a frozen environment. It is not clear whether this N N

simplifing assumption is always legitimate; for instance, it O35 NN

has been suggested that the discrepancy between theory ar N T \g\ 1-2

experiments on the polymer renewal time may be due to  _, | S @@@

inter chain interaction§12], which are not included in the & RN O

simple reptation theory. I TN e ]
If the RD model correctly describes dense polymer solu- % Y

tions, we expect that the exponenfiound experimentally in 1 O exact e%

viscosity measurements decreases when decredsihgay T2 + MC \

of exploring experimentally differerd values would be that * DMRG Ve

of coating the ends of the chains with some large molecules; T g}opef—fg AN

if their size becomes comparable to that of the entanglement ope== Nl

distance, the value da could be substantially lowered. For 3 , , ‘ bl

sufficiently smalld, endpoint fluctuations are suppressed and 1 2 3 4 5

the system should enter in a different regime where correc- InN

tions beyond Eq(2) start to play a dominant role a
y al2) play e FIG. 3. Log-log plot ofDN?—1/3 vsN for d=1. The DMRG

<3, as seen from the curve with=0.10 in Fig. Zb). An . . .
experimental verification of these ideas would be rather useqata are in good agreement with the exact ones and with the Monte

. Carlo results. Inset: blow up of the region for larewhere the
ful to under.Stan.d further the long debated issue of the pOIyaeviation of the DMRG datapfrom the sI%pe 2/3 sta?ltes being notice-
mer relaxation time. able

Diffusion constant.Crossover behavior also appears in

other quantities; for instance, in the scaling of the diffusion
constantD(N) as a function of the polymer length. We
calculatedD (N) by applying a small fielde and using the
Nernst-Einstein relatiofl4] INgns1— INgN_1

T T In(N+1)— In(N—1)

slope is not the correct asymptotic one. Similar to the gap,
this can be best seen from the discrete derivative

)

v
D=lim - © A plot of yy versus 1{N is shown in Fig. 4 fod=1, 2,
and 3. As for the gap, we note a nonmonotonic behavior for
d=1, where the maximum ofy is found at about 0.68, i.e.,
very close to the conjectured power2/3. However, for

sufficiently largeN, yy clearly deviates from 2/3 to smaller
6) 1.5

14

e—0

For the scaling behavior dd(N) one expects

D(N)= ! 1+ B
AN? N

where the leading termN~2 is by now well-understood
[1-3,15—-18 and is considered to be experimentally verified

[7]. In the RD model also the prefactor happens to be known 1.2
exactly[16,17: A=2d+ 1. The next to leading order term 1.1
has been investigated as well. By relating the diffusion con-

stant to the renewal time it was predictetd] that the cor- 2 L 2070102030405 1
rection term would be anomalous, i.e.=1/2. This predic- 09 | I/N"? K ]
tion is also supported by other theoretical argumemni. 0g | |

On the other side, accurate Monte Carlo simulation results,
done ford=1, could be best fitted with a power~2/3 both 0.7 1
for the RD mode[15] and also for another model of polymer 06 ____j;?'_W“‘_
reptation[18]. This issue is still unresolved. An exponent 2/3 T

is somewhat surprising since, as also seen above for the ga; 0.5 O"" : : : :

one naturally expectsl~*? corrections. 0.1 02 03 0.4 0.5
In Fig. 3 we show a plot ofjy=D(N)N2—1/A as func- I/N
tion of N on a log-log scale fod=1. The figure shows FIG. 4. Plot of the effective exponent as function of 1{/N

results from exact diagonalization for small lattices, Montesor g=1 (circles, 2 (pluses, and 3(stars. The horizontal dashed
Carlo simulations[10], and DMRG results which we eX- jine indicates the value of the correction expongrt2/3 conjec-

tended up tdN=>57[13]. DMRG data are in good agreement tyred on the basis of Monte Carlo simulations @ 1. The dotted
with those obtained from other methods and follow rathernine is a guide for the eye. Inset: Plot of the effective exponent

nicely a slope—2/3 in the plot. Only a very close inspection describing the scaling behavior of the diffusion constant, which
of the region of largeN systems reveal&ee insétthat this  converges asymptotically to=2.
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values. Fod=2 and 3,y is monotonic inN. As we did for renewal time and the diffusion coefficient, the DMRG calcu-
the renewal time exponeaj,, we fit vy with a cubic curve lations also yield a host of detailed information about the

containing powers of AN. Extrapolations yield y strluct_ure oLthe relpt:_;ltingf] polymer, Lor instancie, oql t{)le drift
—051(1) d=3), y=0.51(1) @=2), andy=0.48(3) @ V& ocity and correlation functions; these results will be pre-

=1). These results strongly support a correction term Witrﬁented else}[/_vhere. Ir-]|ere \;ve_ htfwef sh(t)xvn tha: tthe large finite
y=1/2. The casel=1 nicely illustrates the effect of a maxi- size corrections, charactenstic for he reptation process,

mum in the effective exponertisee Fig. 4, which produces manlfetstt. trtlje?:se_lves ¢ te;]s effect|v|et_ expor(lje?rt]s df?fr .the
an inflection point in the plot of Fig. 3, and data apparen'[lyaSymp otic behavior ol the renewal ime an € ditusion

closely follow a straight line in the log-log scale. Finally, the coefficient. We found that DMRG results reveal that while

inset of Fig. 4 shows the effective exponent obtained fromthe leading correction terms, as given by Doi's thef#}/fit

the logarithmic derivative of the diffusion constant, which is rather well the data for largdl, they are not sufficient to

seen to converge asymptoticallyxe=2. Notice that the be- r(;il(;(sjetoa b((:aroiiiﬁlvdeer d bg]ﬁvg)r:éla;g 2|Iggegﬁzﬁgrthcgr|?tjﬁ) ns
havior is similar to the curves of Fig. 2, but the maximum of ' y 9-log

Xy, which starts to develop whahbecomes smaller, is less plots to determine exponents are hazardous when such large

pronounced than fozy. This indicates that crossover phe- Z?fggg\t,'gli tgnzzilgﬁovigeapsrf;ﬁ)ngérln %?rr]?(;uslag, fL\JArI:::Et}ir(])ntr:)ef
nomena for the scaling of the diffusion constant are less s P yp

. - q\l it shows up as an inflection point that can easily be mis-
vere than those involving. taken for the asymptotic region in the case of insufficient
In conclusion, the above results show that the DRMG is ymp 9

powerful technique to investigate the properties of a reptatgata'

ing polymer. Although we have restricted ourselves to the We are grateful to G. T. Barkema for helpful discussions.
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